Isolation design of a 14.4kV, 100kHz transformer with a high isolation voltage (115kV)

M. Jaritz, J. Biela
Power Electronic Systems Laboratory, ETH Zürich
Physikstrasse 3, 8092 Zürich, Switzerland
Isolation Design of a 14.4kV, 100kHz Transformer with a High Isolation Voltage (115kV)

Michael Jaritz, Jürgen Biela
Laboratory for High Power Electronic Systems
ETH Zurich
Zurich, Switzerland
Email: jaritz@hpe.ee.ethz.ch

Abstract—In this paper, the isolation design procedure of a 14.4kV output voltage, 100kHz transformer with an isolation voltage of 115kV using Litz wire is presented. For designing the isolation, a comprehensive design method based on an analytical maximum electrical field evaluation and an electrical field conform design is used. The resulting design is verified by long and short term partial discharge measurements on a prototype transformer.

Keywords—High voltage, high frequency transformer; isolation design

I. INTRODUCTION

For the new linear collider at the European Spallation Source (ESS) in Lund, 2.88 MW pulse modulators with pulsed output voltages of 115 kV and pulse lengths in the range of a few milliseconds are required (pulse specifications see Table I). For generating these pulses, a long pulse modulator based on a modular series parallel resonant converter (SPRC) topology has been developed [1]. This converter is operated at high switching frequencies (100 kHz 110 kHz) to minimize the dimensions of the reactive components and the transformer. To achieve the required output voltage of 115 kV, 8 SPRC basic modules each with an output of 14.4kV are connected in series [2], see Fig. 1. Due to the series connection of the SPRC basic modules, the insulation of the last oil isolated transformer in the row has to withstand the full pulse voltage.

In the literature several approaches are presented for designing a high voltage, high frequency transformer with nominal output voltages between 50 kV-60 kV and a switching frequency of 20 kHz [3, 4, 5]. The transformer presented in [6] is designed with respect to an isolation voltage of 15 kV, a nominal output voltage of 3.8 kV and 3 kHz operation frequency. In [7] the design is carried out for a nominal output voltage of 3 kV, a switching frequency of 10 kHz and provides partial discharge measurements for short term tests (1 min, test voltage 28 kV). However, all of these transformers are either tested only under nominal field conditions [3]-[6] and/or no values for long term partial discharge measurements which are an essential life time key parameter for high voltage components are given [7]. In addition the isolation voltage of 115 kV and the switching frequency range of 100 kHz-110 kHz exceed by far the designs in [3]-[7]. Therefore, in this paper an isolation design procedure for a 14.4kV nominal output voltage, 100 kHz transformer with an isolation voltage of 115 kV is given and verified by long term (60 min) nominal test voltage and short term (5 min) extended test voltage (up to 136%) partial discharge measurements.

In section II, an isolation design procedure which is part of a transformer optimization procedure is presented, which is used to design the transformer for ESS. Afterwards, in section III the resulting design is evaluated by long term nominal test voltage and short term over-voltage partial discharge measurements.

II. ISOLATION DESIGN PROCEDURE

Due to the high number of degrees of freedom during the transformer design process as for example the geometric
parameters of the core or the windings, an optimization procedure has been developed for optimally designing the transformer (see Fig. 2) [1]. In the first step, an electrical model of the SPRC basic module determines the input parameters and constraints for the transformer optimization, for the given pulse specifications. Before the transformer design procedure is started, first a specific core and winding geometry has to be chosen. For the core geometry an E-type core is used. For the winding geometry, there are five basic winding configurations possible (Fig. 3) which are investigated with respect to the maximum electrical field, lowest electrical energy per length \(W'_E \) and maximum wire to wire withstand voltage \(V_{WS} \) by varying the distance \(\Delta x \). The standard and the flyback winding configuration (see Fig. 3(a) and (b)) lead to high \(E_{max} \), \(W'_E \) and \(V_{WS} \) values [8]. The s-winding configuration (see Fig. 3(c) and (d)) has the advantage of a minimum withstand voltage, but still high \(E_{max} \) values occur. Adding a field shape ring to Fig. 3(d) results in the winding arrangement given in Fig. 3(e). The first and the last turn of the winding are mounted inside field shape rings leading to a reduced \(E_{max} \). Fig. 4(a) and (b) show the electrical field distribution of the s-winding configuration with and without field shape rings. Comparing case (d) and (e) in Table II, the occurring peak field is reduced by 43.3%. The field shape rings are on the same potential as the respective turn and one end of the turn is soldered to the corresponding field shape ring, see Fig. 5(d). Due to this arrangement the high frequency losses do not increase much because most of the load current is still conducted by the Litz wire and not by the field shaping ring. With the defined core and winding geometry (Fig. 3(e)) all losses and parasitics are calculated and also the maximum electrical peak field is estimated. Afterwards, in a FEM based post design check a detailed model of the transformer is evaluated regarding oil gap widths and creepage paths.

In the following the isolation design procedure (areas highlighted in gray in Fig. 2) which can be divided into an analytical maximum electrical field evaluation and a FEM supported post isolation field conform design check are described more in detail.
A. Evaluation of the maximum electrical field

Due to the complexity of the transformer isolation structure, it is not computationally efficient to use a comprehensive analytical model of the transformer including all details as e.g. bobbins, winding fastenings and oil gap barriers (see Fig. 5) in the optimization procedure. Instead an analytical maximum electrical field calculation is used, which is based on the image charge method [1] and allows a quick basic isolation design check considering the maximal electrical field which has to be below a certain constraint value (see Fig. 2). This method considers a single insulation material permittivity and is ≥7 times faster than FEM, because only a few points along the surface of the turn with the highest potential are evaluated to estimate the highest E_{max} value.

B. FEM supported field conform design

In the following, first, the material characteristic of the components are presented and afterwards the FEM supported field conform post design procedure is discussed. For the built prototype emphasis was put on the choice of proper insulation materials (see Table III). The main insulation material is the transformer oil MIDEL7131 [9] with a relative permittivity of 3.2. All other insulation materials are chosen with respect to the transformer oil such that they have a similar permittivity to avoid local field enhancements at the boundary layer of different materials and maximum electrical strength.

Figure 5(a) shows the built transformer prototype, which has no mountings between primary and secondary inside the transformer, (c) core window with oil gap barrier, and (d) last turn mounted inside the field shape ring.

A. Evaluation of the maximum electrical field

Due to the complexity of the transformer isolation structure, it is not computationally efficient to use a comprehensive analytical model of the transformer including
areas. The secondary bobbin is milled out of a single solid POM block to minimize voids and component intersections (see Fig. 5(b)). Additionally, silk wrapped Litz-wire is used instead of foil so that no air bubbles are trapped beneath the foil.

An inappropriate design causes partial discharges as well as sliding discharges which can harm the isolation of the transformer permanently and lead to arcs between the windings or the core. Oil gap barriers between primary and secondary winding as well as between secondary winding and core are used to counter the decreasing electrical strength of long oil gaps due to the volume and the area effect [10]. Therefore, for long life times a proper isolation design is necessary and a detailed analysis of the electrical field distribution along long oil paths (P1-P6, see Fig. 6(a) and (b)) and critical creepage paths (P7, see Fig. 6(b)) was carried out with the help of the Weidmann design curve method [16]. There, the ratio of oil design curves (Ed(z)) which are derived from homogenous electrical breakdown tests [17] and the averaged cumulated electrical field strength (E_avg) along certain path lengths (z) is calculated, resulting in safety factor curves q [10].

\[
E_{avg}(z) = \frac{1}{z} \int_{0}^{z} E(z) \, dz
\]

(1)

\[
q = \frac{E(z)}{E_{avg}(z)}
\]

(2)

\(E(z')\) is the electrical field point at point z’ and q has to be multiplied by 0.7 if used for creepage paths [10]. For a valid design all q curves have to be above 1 (see Fig.7). With this method, isolation designs with homogenous as well as with strongly inhomogeneous field distributions can be investigated. Finally, applying this method leads to an electrical field conform design, which means that the equipotential lines just have mostly tangential components along the surface of insulation boundaries, e.g. oil gap barriers (see Fig.6). Hence, the insulator is stressed mostly by the normal component of the electrical field and has its maximum electrical strength. Table IV summarizes the optimization results of the transformer. In the next section the isolation design is verified by partial discharge measurements.

III. PARTIAL DISCHARGE MEASUREMENTS

For long life times it is not sufficient to know if the transformer withstands a certain voltage level without any breakthroughs. It is also of high importance to know if the transformer is suffering from partial discharges. Such discharges can harm the insulation permanently during normal operation and may lead to serious failures. Therefore, in this section the results of comprehensive partial discharge tests are presented.

The isolation of a single SPRC basic module transformer has to withstand an operating voltage of 14.4 kV. Due to the series connection of the basic modules (see Fig. 1) the required isolation voltage is increasing by 14.4 kV per SPRC basic module. Hence, the last transformer in the series connection has to isolate the full output voltage of 115 kV.

Figure 8 shows the partial discharge measurement setup. The transformer (DUT) is placed inside the oil tank where its primary is shorted and grounded via the metal plate. The secondary is also shorted and connected to the high voltage electrode inside the double toroid. This double toroid is used to compensate the different material intersections which could lead to additional external partial discharges. The whole setup is located in a Faraday cage and has a ground noise level without DUT of about 300 fC. For optimal test conditions the oil has been processed through a filtration system resulting in a moisture level lower than 6 ppm. To reduce possible partial discharges to a minimum, it is important to remove the air out of the DUT. Therefore, the oil tank has been filled under a pressure of 200 mbar below atmospheric pressure. Further air reduction has been achieved by rotating the DUT within the oil. All measurements have been carried out at a room temperature of 20°C.
temperature of 23.5 °C. The partial discharges Q are recorded with an Omicron MPD600 measurement system and are evaluated according to the IEC 60270:2000 standard leading to Q_{IEC} [18, 19].

For a valid isolation design, the DUT has to pass the following test procedure. First, the nominal operation voltage ($115 \, kV/\sqrt{2} = 82 \, kV_{RMS}$, frequency $f = 50 \, Hz$) is applied as test voltage V_{test} to the DUT for 60 min. No breakthrough should occur and the partial discharge level Q_{IEC} should be below 2 pC. Afterwards, V_{test} is increased stepwise up to a voltage of 110 kVRMS (136%) with a test duration T_{test} of 5 min for each step. To pass the test, no breakthrough must occur. The DUT passed the first test with a Q_{IEC} value far lower than 2 pC, as can be seen in Fig. 9. Figure 10 shows a typical phase resolved discharge pattern which has been recorded during the green time interval in Fig. 9(b).

![Fig. 10. Partial discharge measurement setup.](image)

For a valid isolation design, the DUT has to pass the following test procedure. First, the nominal operation voltage ($115 \, kV/\sqrt{2} = 82 \, kV_{RMS}$, frequency $f = 50 \, Hz$) is applied as test voltage V_{test} to the DUT for 60 min. No breakthrough should occur and the partial discharge level Q_{IEC} should be below 2 pC. Afterwards, V_{test} is increased stepwise up to a voltage of 110 kVRMS (136%) with a test duration T_{test} of 5 min for each step. To pass the test, no breakthrough must occur. The DUT passed the first test with a Q_{IEC} value far lower than 2 pC, as can be seen in Fig. 9. Figure 10 shows a typical phase resolved discharge pattern which has been recorded during the green time interval in Fig. 9(b). Most of the discharges occur at or near the positive or the negative half wave maximum of the test sinus. This could be interpreted as single ended contact to one electrode according to [10]. Also the second test is passed successfully as depicted in Fig. 11. In the next step, V_{test} is increased stepwise (+9%) from +100% to +136% (see Fig. 11(a)). There, also and no breakthrough occurred (see Fig. 11(b)). The Q_{IEC} level still remains below 2 pC for the first two voltage steps. The peaks A’, A”’, and A’’’ are caused by the main supply of the HV test transformer.

![Fig. 11. (a) Applied stress voltage $V_{test} = 82 \, kV_{RMS}$ with a test duration of 60 min., and (b) averaged measured partial discharge level Q_{IEC} which has been weighted considering [19]. The green interval is used in Fig. 10.](image)

IV. CONCLUSION

In this paper, a comprehensive isolation design procedure for a 14.4 kV nominal output voltage, 100 kHz transformer with an isolation voltage of 115 kV is presented. The procedure consists of a fast analytical maximum electrical field evaluation used during the automatic optimization of the transformer and a field conform post processing isolation design check. The resulting isolation system is verified by...
partial discharge measurements. First, a 60 min long test at nominal voltage is performed and afterwards the test voltage has been increased from 100% to 136% in 9% voltage steps. Each voltage step is applied for 5 min. Both tests are passed with no breakthroughs and the partial discharge level is lower than 2 pC at nominal voltage. For long life times it is essential to remove the air from the transformer isolation system.

ACKNOWLEDGEMENT

The authors would like to thank the project partners CTI and Ampegon AG very much for their strong support of the CTI-research project 13135.1 PFFLR-IW.

REFERENCES

