A High Power Current Source with Arbitrary Current Waveforms for a HVDC Circuit Breaker Test Bench

Christoph Carstensen
Why is a Test Bench for HVDC Circuit Breakers necessary?

- HVDC grids require possibility to disconnect parts of the grid
- First commercial, hybrid circuit breakers are available
- Further research necessary to improve circuit breakers
- One approach is the investigation of the DC arc
Required Current Waveforms

- Aim to describe the DC arc behavior
- Identify dependency of current and current gradient
- Required specifications:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Current</td>
<td>(I_{\text{out, max}})</td>
<td>30 kA</td>
</tr>
<tr>
<td>Max Voltage</td>
<td>(V_{\text{out, max}})</td>
<td>10 kV</td>
</tr>
<tr>
<td>Current Gradient</td>
<td>(\frac{dI}{dt})</td>
<td>200 (\frac{A}{\mu s})</td>
</tr>
<tr>
<td>Pulse Length</td>
<td>(T_{\text{period}})</td>
<td>100 ms</td>
</tr>
</tbody>
</table>
New Concept for the test bench: Unipolar Arbitrary Current Source (UnACuSo)

- 21 stacks, each with
 - 10 kV output voltage
 - 1.4 kA output current

- Combination of 2 converter Topologies:
 1. Low Voltage 3 Level Converter
 - High Switching Frequency
 - Enables Fast Dynamics
 2. Multi Level Converter
 - Generates High Output Voltages
 - Low Switching Frequency
Operation Principle of UnACuSo
3 Level Converter Prototype System
3 Level Converter Prototype System

Max Current: $I_{\text{out, max}} = 1.4 \text{ kA}$

Max Voltage: $V_{\text{out, max}} = 550 \text{ V}$
UnACuSo Prototype

- Proof of operation principle with prototype system
- Identification of the prototype’s limitations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Voltage</td>
<td>$V_{out,max}$</td>
</tr>
<tr>
<td>Output Current</td>
<td>$I_{out,max}$</td>
</tr>
<tr>
<td>Current Gradient</td>
<td>$\frac{dI}{dt}$</td>
</tr>
<tr>
<td>Operation period</td>
<td>t_{Pulse}</td>
</tr>
</tbody>
</table>
Measurement Results 3 Level Converter System

- Different resistive loads are employed
- Maximal output current of 1.4 kA
- Maximal current gradient of $3 \frac{A}{\mu s}$
- Typical test waveform
Measurement Results of UnACuSo

- Combination of 3 level converter system and modular multi level Marx type converter
- Special focus on output current ripple minimization
Summary

- 3 level converter system can be operated at full current, full voltage and maximal current gradient $\frac{dl}{dt}$.
- Proof of concept of UnACuSo performed
- Limitations of the prototype are indentified
Next Steps

- Enlarge the output voltage and current range
- Improve the EMI immunity

Phase II

- Build full scale test system
- Extension to a hardware-in-the-loop real time simulator
- Investigation of advanced control techniques
Thank you for your Attention

In collaboration with

Supported by SCCER